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Reduction formulae for generalised hypergeometric functions of 
one variable 

J E Gottschalk and E N Maslen 
Department of Physics, University of Western Australia, Nedlands, Western Australia 6009, 
Australia 

Received 29 July 1987 

Abstract. Series of gamma functions can usually be expressed as generalised hypergeometric 
functions of one or more variables, providing a tool for classifying series transformations. 
While most recent studies of these functions concern the multivariable type, the authors 
have derived new transformations and extended known results for single-variable functions. 
The derivations of the new identities are straightforward and the results are presented in 
their most general form. 

1. Introduction 

The motivation for this study of generalised hypergeometric functions is provided by 
the analysis of certain partial differential equations by series solution. The partial 
differential equations are related to the Schrodinger equation for a system of three 
charged particles. The solution is expressed as a series of orthogonal polynomials and 
powers of length variables. Recent examples are due to Pluvinage (1982), Abbott and 
Maslen (1987) and Gottschalk et a1 (1987). Earlier work is described by those authors. 
The expansion coefficients are derived in the form of single or multiple series, which 
require simplification. The expansion itself can be compacted, at least partially, and 
the technique has provided the form of the wavefunction, at small interparticle dis- 
tances, in terms of special functions (Gottschalk et a1 1987). Extension of this work 
involves reducing a large number of series. The generalised hypergeometric notation 
(Slater 1966) provides a means of classifying transformations of series, reducing the 
possibility of duplicating known results. 

The algorithmic problem of determining indefinite integrals has been solved for an 
important class of integrands. The technique, described by Risch (1969, 1970) applies 
to integrands which are algebraic or elementary transcendental functions. This method, 
described by Norman (1983), provides the algorithmic basis for symbolic computation 
with this class of integrals. Some progress has been made in extending the Risch 
procedure to integrals of transcendental functions which evaluate to error functions 
and logarithmic integrals (Cherry and Caviness 1984, Knowles 1986). 

An analogous procedure for simplifying series is needed but little progress has 
been made. Karr (1981) derived an algorithm which, for a limited class of finite series, 
produces a rational expression equal to the original series. However, Karr’s algorithm 
does not apply to a wide variety of sums. In particular the method cannot be applied 
if the upper summation limit appears in the summand. 
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Unlike the task of simplifying indefinite integrals, the reduction of series is generally 
unsystematic. Heuristic methods exist but for a given series it is not possible to state 
with certainty what method will succeed, or even if the series can be reduced to a 
specified set of functions. 

Following the notation of Barnes (1907), the generalised hypergeometric function 
is defined by 

where ( a ) ,  r ( a  + n ) / I ' ( a )  is the Pochhammer function. The series with p = 2 and 
q = 1 is known as the Gauss series or ordinary hypergeometric series. This function 
is described by Abramowitz and Stegun (1972). Bailey (1935) and Slater (1966) discuss 
its convergence. The parameters a, and b, and the variable z, which may in principle 
be complex, are restricted to real values in this work. Because generalisations of (1) 
also exist, this series is referred to here as the hypergeometric series rather than as the 
generalised hypergeometric series. 

Calculations of the expansion coefficients for the few-particle wavefunctions 
frequently generate sums over polygamma and gamma functions. Many of these are 
nearly-poised, well-poised or Saalschutzian hypergeometric functions and hyper- 
geometrics with numerator and denominator parameters differing by integers. Some 
have arguments of *l. 

This article first describes a 'core' of hypergeometric identities, some of which are 
believed to be new, while others extend known results. Several methods are used in 
their derivation, and further extensions are suggested. Hypergeometric functions are 
rarely in a form in which these formulae can be applied directly. The order of the 
function must be reduced, as described in a later section. 

The labelling of the subsections is necessarily approximate since deriving new 
hypergeometric identities may require integral methods which, in turn, use series 
rearrangement. 

Writing sums as hypergeometric functions has the great advantage of simplifying 
manipulation by computer algebraic methods. Computer algebra is becoming more 
widely used and there is growing interest in encoding hypergeometric identities (Lafferty 
1979, Hayden and Lamagna 1986). For this reason some known formulae are expressed 
here in their generalised form. 

2. Elementary hypergeometric identities 

The hypergeometric functions for the calculation of the few-body wavefunction form 
three classes: 

(i) p F p - , ( z )  whose top parameters and bottom parameters differ by integers, 
(ii) Saalschutzian functions, and 

(iii) well poised and nearly-poised series. 
The terminology is that of Slater (1966). 

For class (i), high-order functions are reduced to low-order functions which simplify 
using a core of hypergeometric identities. This reduction of order is described in 0 4. 
Most core identities are standard reductions of hypergeometric series to gamma 
functions by Gauss's, Saalschutz's, Kummer's and Vandermonde's theorems (Slater 
1966) and identities for *F1 of variable argument (Abramowitz and Stegun 1972). Other 
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elementary identities are found by writing the pFp-l as a series and using the polygamma 
(+(x), +'"'(x)), generalised Riemann zeta ( l ( n ,  x))  and Lerch's functions (@(x, n, a ) ) ,  
described by Gradshteyn and Ryzhik (1980) and Lerch (1887), 

ab 
3 F 2 [  a + l ,  b + l ;  '1 =(a-b) ( + ( a )  - + ( b ) )  

4a + 1, . . . , a + 1 

( 2 a )  

( 2 b )  

( 2 c )  

( 2 d )  

1, a,. * . , a 

1, a, * . . , a 

1, a,. . . , a 
a + l ,  * .  . ,  a + l '  P F P  - 1 

( - a / 2 ) P - 1  ( + ' P - y u / 2 )  - +'P-')( 4 2 + 4 ) ) .  

3. Derivation of extra hypergeometric identities 

The standard identities in 0 2 are a subset of the core identities. Some hypergeometric 
functions of higher order may be related to functions in this list, achieving a complete 
reduction of the original series. However, the list must be expanded for work on the 
few-body Schrodinger equation. The expansions required are described in this section. 
Many generalise known results and, as the aim is to encode all the mathematics on 
hypergeometric functions into a computer algebra system, the most general identities 
are given. 

It is assumed that the hypergeometric functions are convergent and do not contain 
negative integers in the bottom parameter list. Abramowitz and Stegun (1972) provide 
reductions for Gaussian hypergeometric series, *F,( 1, a ;  a + 1; z )  for particular values 
of a. These may be extended to yield 

"-2 z i + l  

2Fl(1, a ;  a + I ;  z )  = -az-" In( 1 - z)  - az-" C - ( 3 a )  
,=O ( i +  1) 

where a E Z', Iz/ < 1 or z = -1, 
- 1  ( - z * ) i  

2Fl(l, a ;  a + l ;  - ~ * ) = 2 u z ~ ~ " ( - 1 ) " ~ " ~ t a n - '  z + 2 ~ ( - 2 ) ' / ~ - "  s -  ( 3 b )  
i = o - 1 / 2  ( 2 i +  1) 

where ( 2 a )  E Z, but a FZ Z, Iz/ 1, 

*F1(l ,  a ;  a + 1; z') = U Z - ~ "  In (3c) 

where ( 2 a )  E Z but a FZ Z, /zI < 1, and S::: is the generalised sum interpreted as X::; 
for p < q, as - X f i i  for p > q and as zero when p = q. These may be derived from the 
relation between a hypergeometric and Lerch's function ( 2 b )  but are important enough 
to be listed separately. 

3.1. Identities obtained by diferentiation 

Consider the function 
a,. . . , a, b 
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Writing part of the summand in the series representation of this function as an integral 
using a Laplace transform (Abramowitz and Stegun 1972) yields 

For z = 1 this is a standard integral, giving, 

a,. . . , a, b 

b G Z+. [;i;“ T ( r + l - b )  1 I = a  

r ( l  - b ) ( - a ) P  d‘p-l’ - -  - 
PI  

( 5 )  

In the case of z # 1 and b E Z+ the integral is calculated by repeated integration by 
parts. An efficient method is based on integration by parts yielding a difference equation 
of the form 

f ( m ) = g ( m ) + h ( m ) f ( m - n )  
with the well known solution (Milne-Thompson 1951) 

f ( m ) = f ( s )  y h ( i + n ) + m f n  g ( i + n )  y h ( j + n ) .  
i = s , n  i = s , n  j = i + n , n  

This yields 

x T ( b  - r )  b - l  U i )  
r( b ) r  ( 1 - r )  I L d x +  ( 1 - ZX) r(b) c ( l - z x ) T ( i + l - r )  

T( b - r )  
XI-’( 1 - ZX)-~ dx = 

where b E Zt. Using 5 X I - ’ (  1 - zx)-’ dx = xr@(zx, 1 ,  r )  equation (4) becomes 

where b E Z + .  In particular, for z =  -1  and bEZ’ 

T ( i )  ( - a ) p  [ d‘””’ ( b - 1  

. - I  = -  T ( b - r )  c a , .  . . , a, b ] r ( p ) T ( b )  dr‘P-l’  i = l  2 ‘ r ( i + l - r )  

r = a  

T ( b - r )  
2T( 1 - r )  

+ ( 7 )  

This generalises ( 2 d )  but the form of the previous result is more useful when b = 1 .  

3.2. Identities obtained by integration 

Some hypergeometric functions of variable argument reduce by relating the function 
to an integral of a function of lower order. The original hypergeometric is simplified 
if this lower-order function is reducible and the integral can be evaluated. Reduction 
of various * F I ( z )  and 3 F z ( z )  have been achieved using this procedure. 
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Expressing a hypergeometric function in terms of an integral using a Laplace 
transform, as described above, gives 

= a  lo' xa- ' ,Fo(b ;  -; zx) dx 

= a lo1 xa-'( 1 - z ~ ) - ~  dx. 

Integration by parts and using ( 6 )  relates this to standard integrals in the cases of 
a E Z+, ( 2 a )  E Z with b E Z+ and ( 2 a )  E Z with ( 2 b )  E Z. The identities derived for these 
2F1 are listed in appendix 1. 

Some F2 may be reduced via identities for Gaussian hypergeometric functions 
given by Abramowitz and Stegun (1972). In particular 

3F2[ a, b, b +f ; z] = a  [ I  x'-'~F,[ b, 2b b + i  ; zx] dx 
a + l , 2 b  0 

and 

3 F 2 [  a, b, b+$ * z] = a 1' xa-I2F,[  b, b + i  ; zx] dx 
a + 1 , ;  ' 0 

It is possible to complete the integration for particular values of b. This should 
extend for general b but this has not been completed. 

A further extension of these hypergeometric functions is the set of functions 
containing more than one pair of parameters which differ by one. The order of functions 
of this type can sometimes be lowered by applying the contiguous relation (Rainville 
1960) 

When a = b an alternative procedure is required. 
Consider 

a,.  . . , a, b 

Laplace transformation yields 
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This may be integrated by parts. Defining the indefinite integral 

vi = L.. . XLI-Idx.. . dx 
X x (1-zx) 

where the subscript i implies there are i integrations, gives 

E -0 i = l  r( p + 1 - i )  (9) 

The results for the function 

a + l , a + l '  
3F2[ 

with a E Z +  and ( 2 b ) ~ Z  are reported in appendix 1. A special case of this has been 
described by Inayat-Hussain (1987) in the course of studying critical-point behaviour 
of the n-vector model of phase transitions. It may also be possible to reduce other 
functions by the method of (9) but this has not yet been verified. 

3.3. Identities obtained by l'H6pital's rule 

An alternative procedure applicable to some hypergeometric functions containing 
identical numerator parameters takes the limit b + a in (8) using l'H6pital's rule (Luke 
1969). This relies on a reduction of the hypergeometric functions in the right-hand 
side of (8) valid for all a and b. For example, the contiguous relations and Saalschutz's 
theorem yield 

where n E Z+. Using this expression, (8) and taking b + a an identity for a 4F3( l) ,  
which arises in the potential expansion in spherical polar coordinates, is obtained: 

* l3 
a, a, c, -n 

a+ 1, a+ 1, c -  1 - n '  ..[ 
r ( n + i ) ( - i ) " r ( c - i  - n ) a r ( a + 2 + n  - c ) T ( a + l )  

r ( c ) r ( a  + 1 + n)r(a + 1 - C )  
-- - 

x [ $ ( a ) + $ ( a + 2 +  n -c )  - $ ( a  + 1 + n )  - $ ( a  + 1 -c)] (10) 
where n E Z+. This method of deriving (IO) from the 3F2 formula may be applied to 
extend the result to higher-order hypergeometric functions. 

3.4. Reduction of series by rearrangement 

' The coefficients generated for the expansion of the few-particle wavefunction contain 
series which cannot be reduced using known transformations for hypergeometric 
functions. This is expected after surveying the reduction formulae listed for hyper- 
geometrics. Focusing on single variable hypergeometric functions of argument f 1, 
most reduction formulae express these as ratios of gamma functions, with identities 
(2) as the principal exceptions. The only other reductions are achieved by using 
l'H6pital's rule relating ratios of gamma functions to polygamma functions (for example 
(10)). Although equations ( 5 )  and (7) were derived by a different procedure it is 
possible to use l'H6pital's rule instead. 
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This highlights the deficiency of formulae expressing hypergeometric functions in 
terms of elementary functions other than gamma functions. Many terminating hyper- 
geometric series of argument i l  cannot be expressed solely in terms of gamma 
functions, and would normally be called irreducible series. Some can be written in 
terms of well known irreducible series such as the truncated harmonic series, which 
may be expressed in terms of polygamma functions. It is therefore desirable to catalogue 
the reduction of hypergeometrics to polygamma functions more completely. 

If the helium wavefunction is expanded as a series of Legendre polynomials the 
interelectron potential yields sums over 3 -j symbols and expansion coefficients. Many 
of these are Saalschutzian hypergeometrics of unit argument and cannot be simplified 
by Saalschutz's theorem or the transformations relating well poised and Saalschutzian 
functions (Whipple 1926, 1936). The difficulty of solving Schrodinger's equation with 
the interelectron potential is thus related to the lack of reductions for Saalschutzian 
series. The principal result (Saalschutz's theorem) reduces a terminating 3F2( 1 )  to a 
ratio of gamma functions. Abiodun (1980)  simplified a restricted Saalschutzian function 
of arbitrary order, also to a ratio of gamma functions. 

Consider 

- r(a + 4 ) r 1 2 ~ ~ - "  1 ,  a +f, 1 - n / 2 ,  4 -  n / 2  
4+ b - n / 2 , 1 +  b - n / 2 , $ '  

- 
r ( 2 b +  1 - n)n-'I2 4F3 

where the notation p = i, 2 means the sum over p starts at p = i increasing in steps of 
2.  This occurs in the expansion of the helium wavefunction in polar coordinates 
(Gottschalk 1987). Equation ( 1 1 )  is reduced by applying a binomial identity to the 
series such that its length, initially n / 2  for even n and ( n  - 1 ) / 2  for odd n, is reduced 
by one. 

In this work rearrangement is often required for series containing a binomial term, 
of the form 

where f is usually a ratio of gamma functions. Since the binomial vanishes for p > n 
the series limit is the upper parameter of the binomial. 

In this work a binomial identity which reduces the top parameter of the binomial 
coefficient is applied, reducing the upper summation limit. An example is 

(;) = ( p 2 )  + 2 ( ;  I :> + ( - 2 ,  
P - 2  

with ( 1 2 )  

( n - p )  n - 2  (;3 = G d p - 2 )  
for p # 1 .  

The p = 1 term is treated separately. Repeated application of the identity reduces the 
original sum to a single term. When the binomial identity is applied, the complexity 
of the series increases if each term cannot be reduced to its original size, i.e. each 
application of the identity would yield series of decreasing length but with terms of 
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increasing complexity. The original series eventually reduces to another finite series. 
This is useful only if the second series is simpler than the original. 

Applying (12)  k times to the series with p odd, ( 1  1) yields 

r ( $ + p / 2 ) r ( a  + p / 2 )  ( " )  p r( b + p / 2 -  n / 2 ) r ( b + p / 2 -  n / 2 + $ )  

= "tj" ( n  ;2k) 
U f + p / 2 ) r ( a  + p / 2 ) Q ( k ,  P) 

r( b + p / 2  - n / 2 +  k ) T (  b + p / 2 -  n/2+$+ k )  p = l 2  

+2r(a+' )  zo T ( b  - n/2+:+ r ) T ( b  - n / 2 +  1 + r )  
Q ( r ,  1 )  k - 1  

where 

Q(k ,  p )  = ( b  - n / 2 + p / 2 +  k -  I ) ( b  - n / 2 + p / 2 +  k - $ ) Q ( k -  1 ,  p )  

- ( p  + 2k - n ) (  a + p / 2 )  Q (  k - 1 ,  p + 2 )  

+ f ( P +  l ) ( a + p / 2 ) Q ( k -  l , P + 2 )  k>O 

and Q(0,  p )  = 1. 

b = 1/2+ a12 and is linear in p if b = 1 + a / 2 .  It can be proved by induction that 
By evaluating Q ( k ,  p )  for various k it is seen that Q ( k , p )  is independent of p if 

T ( n + a )  
for b = $ + a / 2  Q(k' ') = T( n + a - 

and 

T ( n  + a - 1 )  
[ ( n  + a  - 2 k ) ( n  + a  - 2 k -  1 )  

Q(k' ')' T ( n  + a  - 2 k +  1)4k 

+ k (2p  +4a)] for b = 1 + a / 2 .  

The final expression depends on whether n is even or odd. For odd n ( 1 3 )  yields 

r ( f + p / 2 ) r ( a  + p / 2 )  
r ( b + p / 2 -  n / 2 ) T ( b  + p / 2 -  n / 2 + f )  

- T ( a + i ) Q ( n / 2 - $ ,  1 )  - r( b)T(  b +$) 

Q ( r ,  1 )  
r = O  r ( b - n / 2 + 4 +  r ) T ( b  - n / 2 +  1 + r )  

n / 2 - 3 / 2  

+ 2 r ( a + f )  1 

while for even n the series equals 

Q ( r ,  1 )  2T( a + $) Q(  n /  2 - 1 , l )  n / 2 - 2  

T( b -$)T( b )  + 2r(a + ') zo T( b - n / 2  + f + r ) T (  b - n / 2  + 1 + r )  

These results are useful because the series on the right of these equations, although 
of the same length as the orignal, are less complex. 
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For 2a an odd integer the expressions for n odd and n even can be unified by 
expanding the ratios of gamma functions by partial fraction decomposition (Rainville 
1960, pp 82-3), noting that 

This eliminates the sums which terminate at a point depending on n, producing sums 
whose upper limits are functions of a. 

The remainder of the reduction applies finite series rearrangement and properties 
of the digamma functions. The lengthy calculation is omitted here. Details are 
described by Gottschalk (1987). 

The unified results are 

1 ,  a,;- n/2, -n/2 

- - 

r( n + a - 5) 
( n +  1 )r (n  - a  - f )  

- - 

( 1 5 )  

For convenience the earlier definitions of the parameters a and n have been shifted 
by f and 1 respectively. The conditions on the new a and n is that both are positive 
integers. While digamma functions, +( z ) ,  and T have infinite series representations, 
they combine in (14) and (15 )  to form finite series. The presentation used here was 
found to be the most useful. Formulae (14) and ( 1 5 )  are useful because, in the potential 
expansions, a is always a number rather than a variable. 

Reduction formulae have not been derived for other functions of interest, such as 

where a, n E Z’. 
a, a, a, - n / 2 , f -  n/2 

This is similar to 
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which reduces by transforming to an equivalent 4F3 (Whipple 1926), expressing this 
as a finite series of 3F2 reducible via Saalschutz’s theorem, then applying standard 
identites (Slater 1966) to simplify the result. Although the even and odd n functions 
are considered separately the results can be united. The reduction of (16) does not 
follow using this with l’H8pital’s rule ( 0  3.3) because the 4F3 formula contains a sum 
terminating at a, and is only valid for integral a. 

4. Reduction of order of hypergeometric functions 

Hypergeometric functions arising from the few-body Schrodinger equation are rarely 
reducible by direct application of the identities in 00 2 and 3. It is more common for 
the functions to be of higher order, i.e. to contain pairs of parameters such as {a ,  a + m},  
m E Z rather than {a,  a + 1). These may be related to the core functions defined in $0 2 
and 3 by repeated application of the contiguous relations (Rainville 1960). Note that 
Rainville (1945) listed an extra contiguous relation which is sometimes useful, although 
it is not independent of those given by Rainville (1960). 

Formulae equivalent to applying contiguous relations k times are presented in 
appendix 2. Their proof (by induction) is not described here. 

The transformation formulae listed in appendix 2 are helpful in reducing the order 
of quite general hypergeometric functions. Many functions arising in this work may 
be transformed more efficiently using the more restrictive formulae given by Karlsson 
(1971, 1974). Minton (1970) gives a relation for a function with the property that some 
numerator parameters are greater by a positive integer than denominator parameters. 
This is generalised by Karlsson by relating the function to a sum of hypergeometric 
functions of lower order; 

where J, = j, + . , . +j, and 

Srivastava (1973) provides a simpler proof. Karlsson (1974) also related a hyper- 
geometric function, which has some numerator parameters smaller than some 
denominator parameters, to functions of lower order. His least restrictive result is 

a, ,  * * an, a n + , ,  . .  * 9 ap m,! 
p F q [  a, + m ,  + 1, .  . . , a, + m, + 1, b,+,, .  . . , b,”] G I G  

= . . . 2 ( fi ( -mr ) j ,  )pFq[  ~ l + j l , . . . , ~ n + j n , ~ n + , , . . . , ~ p  
j ,  =o  j , ,  = O  r =  I j ,  ! (a, + j , )  a l + j , + l  ,..., a , + j n + l , b , + ,  ,..., b, 

(18) 

Assuming ( i )  {a , ,  . . , , a,} are all different and (ii) if a, - a, = N E  N then N > mi is 
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satisfied, the required reduction of order is achieved: 

pF9[  U ,  + m, + 1 , .  . . , U,, + m, + 1, bn+ l , .  . . , b, 
a , , . .  .,a,,a,+,, 9 1 ap ; z ]  fi- m,! 

r = l  ( ~ ) ~ , + i  

Karlsson did not realise that the multiple summation can be greatly reduced using 

r( a, - a, - j i )mr !  
r( a, + m, - a, - j ,  + 1) 

- 3 - 
J , = ~  j ,  ! (a r  + j ,  - a, - j ,  ) 

(proven by Vandermonde's theorem), to give the simpler form of ( 19): 

Most hypergeometric series with integral parameter diff erences encountered in spherical 
polar expressions for few-body wavefunctions are initially reduced using (17)  to 
functions of the type 

The procedure for reducing functions of this form depends on whether b is non-integral, 
a positive integer or a negative integer. 

When the conditions on the a, are satisfied (21) may be reduced to a finite sum of 
ZF1 using transformation (20), resulting in 

a , ,  * +  * 1 up, b 
a ,  + m, + 1, . . . , up + m,, + 1 

J = o j !  m,!  ( a ,  + j )  
- a, -A fi = f 2 ( - m Z ) J  

T ( a r +  m, - a, - j +  1) 

If some of the a, are identical the more general transformation (18) is required. In 
many important cases this restriction is satisfied, so it is worthwhile to examine (22) 
in more detail. Series of this type encountered in this work often have z = 1. Equation 
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(22) does not seem useful at first since the hypergeometric functions *F1( ai + j ,  b; a, + j + 
1; 1) are convergent only for Re( 1 - b)  > 0. In general the functions encountered have 
Re( 1 - b) < 0. However, this problem is overcome by the following procedure. 

The derivation for the formula for z = 1 is simplified by preferring Karlsson’s 
equation (19) to the reduced version (20). With anfl = b, p = n + 1 and q = n the 
hypergeometric on the right-hand side of (19) becomes a 2 F , ( z )  which may be written 
as a sum of two functions using the linear relations (Abramowitz and Stegun 1972): 

Taking the limit of z +  1 in (19) yields 
m m1 

. 1 ]  fi -- mr ! - r ( l - b )  f . . .  f a, ,  . . . ,  up, b 
a, + m, + 1 , .  . . , up + mp + 1’ r = l  (ar )m,+ l  i = l  j , = O  j P = O  

It can be shown by induction over p that 

P P  C ( a r + j r - a i - j r ) - ’ = O  

so the last part vanishes for all values of z. Vandermonde’s theorem again enables 
most of the remaining sums to be evaluated, resulting in 

i = l  r = l , r # i  

r( a, - ai - j )  
mi E Zt; b @ Z. 

This is equivalent to applying Gauss’s theorem to the 2 F ,  in (22) without regard to 
the validity of the operation. 

When b is a negative integer, z = 1 and  the restrictions on ai are satisfied, the 2 F ,  
in (22) are terminating series, which can be evaluated immediately using Vander- 
monde’s theorem. The final expression is identical to (23). 

If b is a positive integer the hypergeometric function must be related to (2), (3) or  
one of the  series in appendix 1. This requires the hypergeometric (21) to be transformed, 
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so that b is replaced by 1. Note that (21) equals 

a, 9 . . . 1 ap, b, 1 
a , + m , + 1 , .  . . , a p + m p + l , l ’  P + * F P + l  

Karlsson’s transformation (17) is not helpful here since b may be eliminated, but the 
1 in the numerator will also be increased. The transformation required is one of the 
generalised contiguous relations (equation (A2.4)). This transformation increases the 
1 in the denominator parameters to cancel with the b in the numerator of (24). Applying 
(1 8) or (20) to the resulting hypergeometric functions enables complete reduction via 
the identities in § §  2 and 3. A particular case that arises is b = 1, z = 1 when the 
restrictions on a, in (20) and (22) are satisfied. The transformation (22) does not apply 
as the 2F,  are divergent. Instead one obtains from (20) the result 

P-l r( a, - ai - j )  
X r I  r = l , r f . i  r(a,+ m, - ai - j +  I)’  

5. Conclusion 

The reduction of a number of generalised hypergeometric functions of one variable 
has been described. The simplification of a function containing numerator and 
denominator parameters differing by integers proceeds via the reduction in the func- 
tion’s order, to a sum of hypergeometrics. These may be reduced via a collection of 
identities for low-order functions. New identities belonging to this set have been 
derived, and known results have been generalised. 

The derivation of reduction formulae for hypergeometric functions is less systematic 
than the similar problem of integration. Methods applied in this work have been 
classified so that the identities here may be extended. 

Most recent work concerns hypergeometric functions of intrinsically high order 
(i.e. they are not reducible in order using the transformations in B 4) or functions of 
two or more variables, whereas the results in this article relate to functions of low 
order with some parameters differing by integers. These have been chosen deliberately 
because they arise in particular calculations, namely the solution of the Schrodinger 
equation by series expansion. 

Methods used in this work have also been applied to simple multiple series, 
expressible as multivariable hypergeometric functions. Preliminary results have been 
described by Gottschalk (1987). 
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Appendix 1. Reduction formulae for some hypergeometric functions 

r ( a  + i ) r ( i  - b)  
[ ( l - z ) ' - b - l ]  r( a + 1 - b)z" 

.FI[ " 3 z] = - 
a + l '  

r ( a  + 1) (1 -  z ) l -b  T ( i +  1 - b ) z '  
- c U E Z '  

T ( a + l - b ) z "  , = I  T ( i + 1 )  

( l - - z ) ' - ' T ( u + l )  a-1'2r(i+i- b)z i  
S a + l '  T ( a + l - b )  T ( i + i )  

+-=W(Z) 
T(a + l ) r ( $ -  b)T( b - f )  + 

r ( a + l - b ) I ' ( b ) z R - ' / 2 X 1 / 2  (1 - z ) ' T ( i + i )  41.1 
where ( 2 a )  E Z, a @ Z, b E Zi, and 

( 1  - z) l -br (a  + 1) "-112 r ( i+f -  b)z i  r ( a  + i ) r ( $ -  b )  S + 
z " + ' / ' r ( a + l - b )  r(i+i) r(a+l -b)z"-"2 . i r "2  

" ; z] = - 
a + l  

where (2a )  E Z, a @ Z, (2b)  E Z, b E Z and not both a > 4 and b > f ,  and 

where (2a)  E Z+, U E Z+, (2b)  E Z', b E Zf. 

.F2[ " " 
1 

l1 Y' T ( a + I ) ~ r ( 2 - b ) [ ( l  -z)'-"- . . I= 
T ( a  + 1 - b)z" i = l  i ( i + l - b )  a + l , a + l '  

1 i - l  T ( j + 2 -  b ) ~ '  c a r (a  + I ) (  1 - z ) ' - ~  " - 1  

arya + i ) r ( i  - 6) 

+ T ( a + l - b ) z "  i = l  c i ( i + l - b ) , = ,  r(j+l) 

N b ,  z )  - 
T ( a  + 1 - b)z" 
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where 

Appendix 2. Transformations derived from the contiguous relations 

In the following, restrictions on a, and 6, are such that the right-hand sides are not 
singular, and we use the notation: 

a ,,..., a ,+h  , . . . ,  up. 

F ( b ' + h ) = p F 4 [ 6  ,,..., 6 , + h  , . . . ,  b, 
a, ,  * * * , ap 

( U ,  - 6, + l)F = u,F(u, + 1) -(6, - 1)F(6, - 1) + 
F= 

( U ,  - U,) F = u,F( U, + 1) - u,F( U, + 1) * 
F(a ,  + k -  n, 6, - n ) .  

(1 - a, - k ) n  

k ( u , ) ~  (1 - a, + (a ,  - a, + k - 2 n )  
F = - i  n = O  ( n )  (1 - a,)n-k(l- a, +a l ln  

x F ( a , + k - n , a , + n )  k < la, - U,]. 

(a ,  - a,) F = a,F( a, + 1) - a,F( a, + 1) * 

(A2.1) 

(A2.2) 

(A2.3) 

(A2.4) 

(A2.5) 

(A2.6) 
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